Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Soft materials with unique nanostructures such as lamellar, hexagonal, and cubic morphologies can replicate complex structures that have potential in various fields, including biomedical and industrial applications. However, a key challenge in advancing the broader applications of 3D printing for these nanostructured soft materials is insufficient mechanical properties that hinder their printability and compromise structural stability in the final product. In this study, the suitability of a fatty acid‐based lamellar gel is evaluated for direct extrusion‐based 3D printing. The lamellar gel with varying water content is integrated with a photocurable hydrogel to preserve the shape and stability of the final prints. Complex 2D and 3D design patterns are used to assess extrusion behavior, structural stability, and print precision under varying pressures. Small‐angle X‐ray Scattering (SAXS) measurements reveal the formation of lamellar nanostructures and confirm their retention after photocuring in various gels. Rheological analysis confirms that these gels exhibit key properties suitable for extrusion‐based 3D printing, such as shear‐thinning behavior. Additionally, tensile testing is conducted to evaluate the mechanical properties across cured print samples. This study underscores the potential of nanostructured gels as a robust and versatile platform, facilitating the development of materials engineered for various applications.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
Associative surfactants systems involving polar oils have recently been shown to stabilize immiscible liquids by forming nanostructures at the liquid interface and have been used to print soft materials. Although these associating surfactant systems show great promise for creating nanostructured soft materials, a fundamental understanding of the self-assembly process is still unknown. In this study, a ternary phase diagram for a system of cationic surfactant cetylpyridinium chloride monohydrate (CPCl), a polar oil (oleic acid), and water is established using experiment and simulation, to study the equilibrium phase behavior. A combination of visual inspection, small-angle X-ray scattering (SAXS), and rheological measurements was employed to establish the phase behavior and properties of the self-assembled materials. Dissipative particle dynamics (DPD) is used to simulate the formation of the morphologies in this system and support the experimental results. The ternary phase diagram obtained from the simulations agrees with the experimental results, indicating the robustness of the computational simulation as a supplement to the mesoscale experimental systems. We observe that morphological transitions ( e.g. , micelle-to-bilayer and vesicle-to-lamellar) are in agreement between experiments and simulations across the ternary diagram. DPD simulations correctly predict that associative surfactant systems form new nanoscale phases due to the co-assembly of the components. The established ternary phase diagram and the DPD model pave the way towards predicting and controlling the formation of different mesostructures like lamellar or vesicles, opening new avenues to tailor and synthesize desired morphologies for applications related to liquid-in-liquid 3D printing.more » « less
-
Abstract Stabilizing liquid–liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water‐oil interface is presented using the morphological transitions that occur during the self‐assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small‐angle X‐ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water‐oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid‐in‐liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid–liquid interfaces not only offers unprecedented opportunities for fine‐tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self‐healing, and porosity, which could have significant implications for various industries.more » « less
-
Abstract The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid‐in‐liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self‐assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self‐assembly at the immiscible liquid–liquid interface, which is confirmed by small‐angle X‐ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low‐viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self‐assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices.more » « less
An official website of the United States government
